Robot Learning from Failed Demonstrations
نویسندگان
چکیده
منابع مشابه
Robot Learning from Failed Demonstrations
Robot learning from demonstration (RLfD) seeks to enable lay users to encode desired robot behaviors as autonomous controllers. Current work uses a human’s demonstration of the target task to initialize the robot’s policy, and then improves its performance either through practice (with a known reward function), or additional human interaction. In this article, we focus on the initialization ste...
متن کاملImitation and Reinforcement Learning from Failed Demonstrations
Current work in robotic imitation learning uses successful demonstrations of a task performed by a human teacher to initialize a robot controller. Given a reward function, this learned controller can then be improved using techniques derived from reinforcement learning. We instead use failed attempts, which may be more plentiful, to initialize our controller and, taking them as illustrations of...
متن کاملInverse Reinforcement Learning via Ranked and Failed Demonstrations
In many robotics applications, applying reinforcement learning (RL) can be especially difficult, as it depends on the prespecification of a reward function over the environment’s states, which is often hard to define. Inverse Reinforcement Learning (IRL) [1] attempts to address this problem, by utilizing human demonstrations to learn the reward function, without having a human explicitly define...
متن کاملLearning from Limited Demonstrations
We propose a Learning from Demonstration (LfD) algorithm which leverages expert data, even if they are very few or inaccurate. We achieve this by using both expert data, as well as reinforcement signals gathered through trial-and-error interactions with the environment. The key idea of our approach, Approximate Policy Iteration with Demonstration (APID), is that expert’s suggestions are used to...
متن کاملA survey of robot learning from demonstrations for Human-Robot Collaboration
Robot learning from demonstration (LfD) is a research paradigm that can play an important role in addressing the issue of scaling up robot learning. Since this type of approach enables non-robotics experts can teach robots new knowledge without any professional background of mechanical engineering or computer programming skills, robots can appear in the real world even if it does not have any p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Social Robotics
سال: 2012
ISSN: 1875-4791,1875-4805
DOI: 10.1007/s12369-012-0161-z